Prompt identification of ST-elevation myocardial infarction (STEMI) is critical to guide reperfusion therapies that are time-sensitive. Right-Sided and posterior ECGs may be useful in identifying STEMI of the right ventricle and/or posterior wall.

Populations
Applies to the adult and geriatric population. There is insufficient evidence to recommend this in the pediatric population.

Translation Into Practice: TIPs for Right-Sided ECGs

Recommended Clinical Practice

To detect right ventricular STEMI associated with occlusion of the right coronary artery, obtain a right-sided ECG. \(^1\)\(^-\)\(^3\)

[Level A Recommendation]

When a 15-lead &/or 18-lead ECG machine is not available, manipulation of the leads from a standard 12-lead ECG machine allow additional areas of the heart to be imaged. \(^4\)\(^-\)\(^5\)

- Indications of a RV wall infarction may include: \(^4\)\(^-\)\(^7\)
 - ST elevation in the inferior leads, II, III, and aVF \(^4\)\(^-\)\(^6\)
 - ST elevation that is greatest in lead III is especially significant \(^5\)\(^-\)\(^8\)\(^-\)\(^9\)
 - ST elevation in V1 (considered to be the only precordial lead that faces the RV on the standard 12-lead ECG) \(^4\)\(^-\)\(^6\), \(^8\)
 - Other findings may include: right bundle branch block, second- and third-degree atrioventricular blocks, ST segment elevation in lead V2 50% greater than the magnitude of ST segment depression in lead aVF \(^5\)\(^-\)\(^8\)
 - Hypotension and clear lung fields \(^6\)\(^-\)\(^10\)

- Place ECG electrodes (stickers) as follows \(^4\) (Figure 1):

Right-sided ECG Electrode Placement

\[
\begin{align*}
V_1R: & \quad 4^{th} \text{ intercostal space, left sternal border} \\
V_2R: & \quad 4^{th} \text{ intercostal space, right sternal border} \\
V_3R: & \quad \text{halfway between } V2R \text{ and } V4R, \text{ on a diagonal line} \\
V_4R: & \quad 5^{th} \text{ intercostal space, right midclavicular line} \\
V_5R: & \quad \text{right anterior axillary line, same horizontal line as } V4R \text{ and } V6R \\
V_6R: & \quad \text{right mid-axillary line, same horizontal line as } V5R \text{ and } V6R
\end{align*}
\]

Arm and leg electrodes remain unchanged from standard 12-lead ECG

Figure 1 used with permission from Barbara J. Drew, RN, PhD, FAAN, FAHA (Drew, B. J., & Ide, B. (1995). Right ventricular infarction. Progress in Cardiovascular Nursing, 10, 46.)

- Place ECG lead cables as follows (using a 12-lead machine):
 - A right-sided ECG is a “mirror reflection” of the standard left sided 12-lead ECG. Begin with lead cable V1 and attach it to electrode V1R, continue connecting lead cables to electrodes in sequence until lead cable V6 is connected to electrode V6R
 - Arm and leg electrodes and lead cables remain unchanged from the standard 12-lead ECG placement
TIP: Right-Sided ECGs – continued

- Label the Right-sided ECG (Figure 2):
 - Note “Right-sided ECG” in the machine, if able
 - Handwrite “Right-sided ECG” on the 12-lead ECG printout if not already part of the electronic printout
 - Re-label V₁ – V₆ on the printout to V₁R – V₆R

- Presence of a right ventricular wall infarction is seen when there is ST elevation greater than 1 mm in V₄R.

Supporting Rationale: Right-Sided ECGs

- Up to 50% of patients with an inferior wall MI may have RV infarction or ischemia.
 - Occlusion of the right coronary artery proximal to the right ventricular branch is associated with inferior wall MI involving the RV.
 - In approximately 10% of the population, the left circumflex artery supplies the right ventricle and may therefore cause an associated lateral wall MI in conjunction with the RV infarction.
 - Patients with coexisting RV infarct have more myocardium involved, increasing their risk of complications up to and including death.
 - Isolated RV infarct is rare; reported to be <3%.

- Hypotension results from the RV dysfunction – patients are preload dependent / they rely on RV filling pressure to maintain cardiac output – use of vasodilators should be avoided.

- ST elevation > 1mm in lead V₄R is sensitive for RV infarction (88-100% sensitivity, 78-82% specificity, 83-92% diagnostic accuracy).

Translation Into Practice: TIPs for Posterior ECGs

Recommended Clinical Practice

To detect posterior STEMI associated with occlusion of the circumflex artery or dominant right coronary artery, obtain a posterior ECG. [Level A Recommendation]

When a 15-lead &/or 18-lead ECG machine is not available, manipulation of the leads from a standard 12-lead ECG machine allow additional areas of the heart to be imaged.

- Indications of a posterior wall infarction may include:
 - Changes in V₁ – V₃ on the standard 12-lead ECG predominantly, which include:
 - Horizontal ST depression
 - A tall, wide R wave
 - A tall, upright T wave
 - R/S wave ratio greater than 1
 - Inferior or lateral wall MI (especially if accompanied by ST depression or prominent R waves in leads V₁-V₃).
TIPS: Posterior ECGs – continued

- Place three additional ECG electrodes (stickers) as follows (Figure 3) – TIP: start at V₉ (the last electrode) and work forward⁴,¹⁴:
 - V₉ – left spinal border, same horizontal line as V₄₋₆
 - V₈ – midscapular line, same horizontal line as V₇ and V₉
 - V₇ – posterior axillary line, same horizontal line as V₄₋₆
- Place ECG lead cables as follows (using a standard 12-lead machine):
 - Locate lead cables V₁₋₆. Connect lead cables to electrodes as follows (Figure 3):
 - Lead cable V₆ connects to electrode V₉
 - Lead cable V₅ connects to electrode V₈
 - Lead cable V₄ connects to electrode V₇
 - Lead cables V₁₋₃ are connected the same way as when obtaining a standard 12-lead ECG:
 - Lead cable V₁ connects to electrode V₁
 - Lead cable V₂ connects to electrode V₂
 - Lead cable V₃ connects to electrode V₃
 - Arm and leg electrodes and lead cables remain unchanged from the standard 12-lead ECG placement
- Label the Posterior ECG:
 - Note “Posterior ECG” in the machine, if able
 - Handwrite “Posterior ECG” on the 12-lead ECG printout if not already part of the electronic printout
 - Re-label V₄ – V₆ on the printout to V₇ – V₉ (Figure 4)

Presence of a posterior wall MI is seen when there is ST elevation greater than 0.5 mm⁷,⁹,¹¹⁻¹²,¹⁵ to 1 mm in V₈₋₉²⁻³,⁵
Right-Sided and Posterior Electrocardiograms (ECGs)

Supporting Rationale: Posterior ECGs

- Approximately 15-20% of all myocardial infarctions involve the posterior wall of the left ventricle and when found in conjunction with an inferior or lateral wall MI, it significantly increases mortality.\(^1,8,12\) Up to 11% of all MIs are thought to be isolated posterior wall MIs.\(^8,12\)
 - In the majority of patients, the posterior wall is supplied by the left circumflex artery (and less frequently a dominant right coronary artery with prominent posterior-lateral or posterior descending branches) which means that inferior or lateral MIs frequently occur in conjunction with the posterior wall MI.\(^1\)
- ST elevation > 0.5mm in leads V\(_5\)-V\(_9\) is sensitive for posterior wall infarction (as high as 90%, with predictive accuracy up to 93.8%).\(^2,3,5,8\)
- Due to the distance of the heart (which is more anterior in the chest), voltage recorded in the posterior leads is often less.\(^8,11,15,18\)

References

Key for Level of Evidence Recommendation

<table>
<thead>
<tr>
<th>Level</th>
<th>Recommendation</th>
<th>Based on evidence strength and quality: has relevance and applicability to emergency nursing practice.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level A (High)</td>
<td>Based on consistent and good quality of evidence: has relevance and applicability to emergency nursing practice.</td>
<td></td>
</tr>
<tr>
<td>Level B (Moderate)</td>
<td>Based on some or limited evidence: has limited or no evidence: has relevance and applicability to emergency nursing practice.</td>
<td></td>
</tr>
<tr>
<td>Level C (Weak)</td>
<td>Based on some or limited evidence: has limited or no evidence: has relevance and applicability to emergency nursing practice.</td>
<td></td>
</tr>
</tbody>
</table>

Disclaimer

This document, including the information and recommendations set forth herein (i) reflects ENA’s current position with respect to the subject matter discussed herein based on current knowledge at the time of publication; (ii) is only current as of the publication date; (iii) is subject to change without notice as new information and advances emerge; and (iv) does not necessarily represent each individual member’s personal opinion. The information and recommendations discussed herein are not codified into law or regulations. Variations in practice and practitioner’s best nursing judgment may warrant an approach that differs from the recommendations herein. ENA does not approve or endorse any specific sources of information referenced. ENA assumes no liability for any injury and/or damage to persons or property arising from the use of the information in this document.

Authors

2012 ENA Board of Directors Liaison:
Kathleen Carlson, MSN, RN, CEN, FAEN

ENA Staff Liaisons:
Kathy Szumanski, MSN, RN, NE-BC
Jessica Gacki-Smith, MPH

Special thanks to Barbara J. Drew, RN, PhD, FAAN, FAHA, for reviewing and providing feedback regarding this document.

Emergency Nurses Association • 915 Lee Street • Des Plaines, IL 60016-6569 • 847-460-4000 December 2012; Revised September 16, 2013