Faculty

John Roeske, Ph.D.
Professor & Chief of Med. Physics Section

Anil Sethi, Ph.D.
Professor & Director of Residency Program

Sebastien Gros, PhD
Assistant Professor

Jake Jackson, MS
Staff Physicist

Hyejoo Kang, Ph.D.
Assistant Professor

Brian Lee, Ph.D.
Assistant Professor

Michael Mysz, MS
Staff Physicist

Iris Rusu, MS
Staff Physicist

Asst. Director Residency Program

Tiffany Tsui, MS
Staff Physicist

Residents

1. Alexander Podgorsak
 SUNY Buffalo
 Buffalo, NY

2. Michael de la Fuente
 University of Pennsylvania
 Philadelphia, PA

Programs

ViewRay’s MRIdian® MR Guided Radiotherapy (MRgRT)
High dose rate (HDR) brachy,
Stereotactic Radiosurgery (SRS),
Stereotactic Body Radiotherapy (SBRT),
Total Body Irradiation (TBI),
Total Skin Electron Therapy (TSET),
Brachytherapy (HDR and LDR),
Permanent Prostate Seed Implant,
Intraoperative Radiation Therapy (IORT) with Zeiss® INTRA-BEAM.
Eclipse Treatment Planning System
ARIA record and verify system integrated with EPIC hospital wide network.

Contact

For Further Information:
Juliann Moravec
Dept. of Radiation Oncology
Loyola Univ. Medical Center
2160 South 1st Ave
Maywood, IL 60153
Juliann.moravec@luhs.org
(708) 216-2585

Program web-site:
https://www.loyolamedicine.org/gme/radiation-oncology-physics-residency

2022-23
Loyola University Medical Center
Maywood, IL*

CAMPEP Accredited
Residency Program in Radiation Oncology Physics

We also treat the human spirit.

*Maywood, IL is located 12 miles west of downtown Chicago
Loyola University Radiation-Oncology Physics Residency Program

The Residency Program in Radiation Oncology Physics at the Loyola University Medical Center (LUMC) is intended to provide comprehensive training in all aspects of clinical physics.

Candidates for the training program are expected to have obtained a CAMPEP approved M.S. or Ph.D. in Medical Physics or closely related discipline and would be highly motivated to prepare for a clinically oriented career.

Training will occur at our “state-of-the-art” treatment-facility under the guidance and supervision of an experienced staff including medical physicists and radiation oncologists.

Program Goals and Objectives

Broad areas of clinical training will include equipment calibration and quality assurance, radiation dosimetry, radiation shielding, facility design, special clinical procedures, treatment planning and imaging. The program length is two years.

The physics residency program is fully integrated into the daily clinical operations of the Radiation Oncology Department. The resident works closely with other members of the department: Staff Radiation Oncologists, Medical Physicists, Medical Dosimetrists, Medical Residents, Nurses and Radiation Therapy Technologists. There are ample opportunities to interact with other departments within the LUMC, including Diagnostic Radiology, Interventional Radiology, Surgery and Neurosurgery. The resident will also receive didactic education in radiation therapy physics.

The residency training program is conducted strictly in accordance with the guidelines from the American Association of Physicists in Medicine (AAPM) Report 249 (Essentials and Guidelines for Clinical Medical Physics Residency Training Programs, AAPM 2013). After successful completion of the residency program, the candidate will have the required knowledge and training to take and successfully complete the American Board of Radiology (ABR, www.theabr.org) certification examination in Therapeutic Radiological Physics.

The main goals of the residency program are to

1. Provide a comprehensive in-depth practical training in all aspects of clinical medical physics, and

2. Prepare the resident for certification in Therapeutic Radiology/Radiation Oncology physics.

Department & Resources

Department is staffed with 10 radiation oncologists, 7 medical residents, 2 physics residents, 9 medical physicists, 7 dosimetrists, 6 radiation oncology nurses, department manager, and 22 radiation therapists. The department also has a Radiation Biology faculty member and 3 research nurses.

Equipment list: a MRIdian® linac, 6 state of the art Varian linacs with on-board imaging, respiratory gating and VMAT. A new linac capable of stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) began operation in early 2016. It is equipped with OBI/CBCT, resp. gating, Align RT positioning/monitoring, Calypso patient monitor system. MR guided RT program with ViewRay’s MRIdian® became operational in Fall 2018.

There are 3 in-house CT scanners (2 Philips Brilliance Big Bore multi-slice CT scanners and Siemens Somatom 4D-CT); several MR scanners in the Department of Radiology (1.5T to 3T) as well as a Philips PET/CT scanner.

Department web-site:
http://luhs.org/radiationoncology